Certified Pool & Spa Operator Certification Course

Handout Packet

Presented by:

2023-r3

Class Agenda

2-DAY CERTIFIED POOL & SPA OPERATOR (CPO) COURSE

Day 1		Chapter	Торіс			
A.M.	8:00 - 8:45	-	Introduction and Housekeeping			
	8:45 - 9:00	1	Pool & Spa Management			
	9:00 - 9:15	2	Regulations & Guidelines			
	9:15 - 10:15	3	Essential Calculations			
	10:15 - 10:30	-	Break			
	10:30 - 11:00	4	Pool Water Contamination			
	11:00 - 12:00	5	Disinfection			
	12:00 - 1:00	-	LUNCH			
P.M.	1:00 - 1:45	6	Water Balance			
	1:45 - 2:30	7	Pool & Spa Water Problems			
	2:30 - 3:00	8	Chemical Testing			
	3:00 - 3:15	-	Break			
	3:15 - 3:45	9	Chemical Feed & Control			
	3:45 - 4:30	10	Water Circulation			
	4:30 - 5:00	11	Pool & Spa Filtration			

Day 2		Chapter	Торіс
A.M.	8:00 - 8:30	-	Internet– National, State and Local codes
	8:30 - 9:00	12	Heating & Air Circulation
	9:00 - 9:30	13	Spa & Therapy Operation
	9:30 - 10:15	14	Facility Safety
10:15 - 10:30			Break
	10:30 - 10:45	15	Keeping Records
	10:45 - 11:00	16	Maintenance Systems
	11:00 - 11:15	17	Trouble Shooting
	11:15 - 11:30	18	Renovation & Design, ADA Revision of 2010
	11:30-12:30	-	LUNCH

P.M.	12:30-1:30	Re	view, Questions, Exam Instructions
	1:30-4:00	Ex	am

BASIC MATH SKILLS TEST

Calculator Functions

- + = Add
- = Subtract or Takeaway
- \pm = Divide
- x = Multiply
- = Represents equals

This basic math skills test is design to help you test your basic math knowledge that you will be required to perform as a CPO® graduate. This is also your chance to make sure that you are familiar with using a calculator. Complete this test before you move on to the next section. The answers to these basic math questions are found on the next page but try not to look until you have completed all the questions. Your CPO® instructor may ask to see your answers to these questions at the beginning of your CPO® course. Simply circle your answer choice.

- Add: 2.32 + 71.4 + 0.003 =

 (a) 73.75
 (b) 94.9
 (c) 9.49
 - (d) 73.723

- **2.** Add: 7.4 + 0.7 + 1.7 + 1.9 =
 - (a) 11.5
 - (b) 11.7
 - (c) 12.1
 - (d) 11.9
- **3.** Subtract: 7,527 149 = (a)7,378
 - (b) 7,478
 - (c)7,388
 - (d) 7,488
- **4. Subtract:** 11. 7 12.1 =
 - (a)+0.4
 - (b) +1.1
 - (c) -0.4
 - (d) +0.4

5. Add and Subtract:

7.2 + 0.9 + 1.8 + 1.6 - 12.2 =(a)+0.7 (b) +23.7 (c) -1.7 (d) -0.7

6. Multiply: 300 x 7.48 =

(a) 2,144
(b) 2,244
(c) 40.106
(d) 292.52

- 7. Multiply: $25 \times 75 =$
 - (a) 1875
 - (b) 2875
 - (c) 18,750
 - (d) 187.5
- 8. Divide: $200,000 \pm 10,000 =$
 - (a)2000
 - (b) 200
 - (c)20
 - (d) 40

- **9. Divide:** 75,000 ÷ 10,000 =
 - (a) 7.5
 - (b) 7.0
 - (c) 75
 - (d) 10

10. You have a pool that is 60 feet in length and 30 feet in width. How many square feet of surface area does this pool have:

- (a) 2,800 square feet
- (b) 3,600 square feet
- (c) 6,000 square feet
- (d) 1,800 square feet

11. The volume of your pool is 328,637 gallons. What is the volume rounded to the nearest thousand?

- (a) 328
- (b) 329
- (c) 329,000(d) 328,000

12. The current chlorine reading in your pool is 1.5 ppm. You want to raise it to 3.0 ppm. How many more ppm of chlorine do you need to add?

- (a) 4.5 ppm
- (b) 3.0 ppm
- (c) 1.5 ppm
- (d) 2.0 ppm

13. How many cubic yards of concrete are needed to make a cement floor of a spa that 9 feet x 12 feet and 6 inches thick?

- (a) 2
- (b) 4
- (c) 18
- (d) 54

14. Your pool slopes from 3.5 feet to 6.5 feet. What is the average depth of this pool?

- (a) 10 feet
- (b) 5 feet
- (c) 22.75 feet
- (d) 3 feet

15. There is a leak in your pool and it loses 2.5 inches of water each day. It takes 1235 gallons for each inch of water in your 60 feet x 30 feet pool. How many gallons do you need to add to your pool each day?

- (a) 494 gallons
- (b) 37,050 gallons
- (c) 4,500 gallons
- (d) 3,087.5 gallons

16. The diameter of a spa is 24 feet. What is the radius?

- (a) 6 feet
- (b) 18 feet
- (c) 12 feet
- (d) 24 feet

э	'9I	р	`\$ I
q	`⊅I	D	`E I
э	·71	э	Π
р	.0I	D	.6
э	.8	D	.7
q	.9	р	.ς
э	· †	D	.5
q	.2	р	'I

CALCULATION FORMULAS

AMOUNT CONVERSIONS	
Ounces to Pounds	Ounces ÷ 16 = Pounds
Fluid Ounces to Gallons	Fluid Ounces ÷ 128 = Gallons

DISTANCE CONVERSIONS	
Yards to Feet	Yards X 3 = Feet
Meters to Feet	Meters X 3.28 = Feet

SURFACE AREA	
Rectangle or Square	Length X Width = Square Feet
Circle (πr^2)	Radius X Radius X 3.14 = Square Feet (Radius = Diameter ÷ 2)

POOL WATER VOLUME			
Average Depth	(Shallow + Deep) ÷ 2		
Water Volume	Surface Area X Avg. Depth X 7.5		

TURNOVER & FLOW RATE	
Turnover Rate (TOR in Hours)	Water Volume ÷ Flow Rate ÷ 60
Flow Rate (FR in GPM)	Water Volume ÷ TOR ÷ 60

FILTER SIZING	
Filter Area (FA in Sq. Ft.)	Flow Rate ÷ Filter Media Rate
Filter Media Rate (FMR)	Flow Rate ÷ Filter Area
Flow Rate (FR in GPM)	Filter Area X FMR

HEATER SIZING	
BTU	Water Volume X 8.33 X Temp. Rise
Time to reach Temp. (in Hours) (Assuming no heat loss in plumbing or pool)	BTUs ÷ (Heater Rating X Efficiency Rating)
Cost (Natural Gas: 1 Therm = 100,000 BTUs)	Time X Heater Rating ÷ 100,000 X Therm Rate

Langelier SATURATION INDEX

Saturation Index Factors

Temperature		Calcium Hardness Expressed as CaCO3		Total Carbonate Alkalinity		Total Dissolved Solids	
Temp ⁰F	Tf	ppm	Cf	ppm	Af	ppm	TDSf
32	0.0	25	1.0	25	1.4	< 800	12.1
37	0.1	50	1.3	50	1.7	801-1,500	12.2
46	0.2	75	1.5	75	1.9	1,501-2900	12.3
53	0.3	100	1.6	100	2.0	2901-5,500	12.4
60	0.4	125	1.7	125	2.1	> 5,500	12.5
66	0.5	150	1.8	150	2.2		
76	0.6	200	1.9	200	2.3		
84	0.7	250	2.0	250	2.4		
94	0.8	300	2.1	300	2.5		
105	0.9	400	2.2	400	2.6		
		800	2.5	800	2.9		

If an actual measurement is not found in the chart, use the next greatest value.

Temperat	ture	Calc Hardı		Carbo Alkali		Total Disso Solids	
Temp °F	Tf	PPM	Cf	PPM	Af	PPM	TDSf
32	0.0	25	1.0	25	1.4	< 800	12.1
37	0.1	50	1.3	50	1.7	801-1,500	12.2
46	0.2	75	1.5	75	1.9	1,501-2900	12.3
53	0.3	100	1.6	100	2.0	2901-5,500	12.4
60	0.4	125	1.7	125	2.1	> 5,500	12.5
66	0.5	150	1.8	150	2.2		
76	0.6	200	1.9	200	2.3		
84	0.7	250	2.0	250	2.4		
94	0.8	300	2.1	300	2.5		
105	0.9	400	2.2	400	2.6		
		800	2.5	800	2.9		

	Value	Factor	New Value	Factor
рН				
Temperature				
Calcium Hardness				
Carbonate Alkalinity				
Sub-Total				
Total Dissolved Solids				
Saturation Index				

	Value	Factor	New Value	Factor
рН				
Temperature				
Calcium Hardness				
Carbonate Alkalinity				
Sub-Total				
Total Dissolved Solids				
Saturation Index				

Temperat	ture	Calc Hardr		Carbo Alkali		Total Disso Solids	
Temp °F	Tf	PPM	Cf	PPM	Af	PPM	TDSf
32	0.0	25	1.0	25	1.4	< 800	12.1
37	0.1	50	1.3	50	1.7	801-1,500	12.2
46	0.2	75	1.5	75	1.9	1,501-2900	12.3
53	0.3	100	1.6	100	2.0	2901-5,500	12.4
60	0.4	125	1.7	125	2.1	> 5,500	12.5
66	0.5	150	1.8	150	2.2		
76	0.6	200	1.9	200	2.3		
84	0.7	250	2.0	250	2.4		
94	0.8	300	2.1	300	2.5		
105	0.9	400	2.2	400	2.6		
		800	2.5	800	2.9		

	Value	Factor	New Value	Factor
рН				
Temperature				
Calcium Hardness				
Carbonate Alkalinity				
Sub-Total				
Total Dissolved Solids				
Saturation Index				

	Value	Factor	New Value	Factor
рН				
Temperature				
Calcium Hardness				
Carbonate Alkalinity				
Sub-Total				
Total Dissolved Solids				
Saturation Index				

Temperat	ture	Calc Hardr		Carbo Alkali		Total Disso Solids	
Temp °F	Tf	PPM	Cf	PPM	Af	PPM	TDSf
32	0.0	25	1.0	25	1.4	< 800	12.1
37	0.1	50	1.3	50	1.7	801-1,500	12.2
46	0.2	75	1.5	75	1.9	1,501-2900	12.3
53	0.3	100	1.6	100	2.0	2901-5,500	12.4
60	0.4	125	1.7	125	2.1	> 5,500	12.5
66	0.5	150	1.8	150	2.2		
76	0.6	200	1.9	200	2.3		
84	0.7	250	2.0	250	2.4		
94	0.8	300	2.1	300	2.5		
105	0.9	400	2.2	400	2.6		
		800	2.5	800	2.9		

	Value	Factor	New Value	Factor
рН				
Temperature				
Calcium Hardness				
Carbonate Alkalinity				
Sub-Total				
Total Dissolved Solids				
Saturation Index				

	Value	Factor	New Value	Factor
рН				
Temperature				
Calcium Hardness				
Carbonate Alkalinity				
Sub-Total				
Total Dissolved Solids				
Saturation Index				

Temperat	ure	Calc Hardr		Carbo Alkali		Total Disso Solids	
Temp °F	Tf	PPM	Cf	PPM	Af	PPM	TDSf
32	0.0	25	1.0	25	1.4	< 800	12.1
37	0.1	50	1.3	50	1.7	801-1,500	12.2
46	0.2	75	1.5	75	1.9	1,501-2900	12.3
53	0.3	100	1.6	100	2.0	2901-5,500	12.4
60	0.4	125	1.7	125	2.1	> 5,500	12.5
66	0.5	150	1.8	150	2.2		
76	0.6	200	1.9	200	2.3		
84	0.7	250	2.0	250	2.4		
94	0.8	300	2.1	300	2.5		
105	0.9	400	2.2	400	2.6		
		800	2.5	800	2.9		

	Value	Factor	New Value	Factor
рН				
Temperature				
Calcium Hardness				
Carbonate Alkalinity				
Sub-Total				
Total Dissolved Solids				
Saturation Index				

	Value	Factor	New Value	Factor
рН				
Temperature				
Calcium Hardness				
Carbonate Alkalinity				
Sub-Total				
Total Dissolved Solids				
Saturation Index				

Water Chemistry Guidelines

The Balance

Parameter	Min.	Ideal	Max.	Pool Type	
рН	7.2	7.4 - 7.6	7.8	All Types	
Total Alkalinity	60	80 – 100*	100	A II - T	
(ppm)	60	100 –120**	180	All Types	
Calcium Hardness	150	200 - 400	1,000	Pools	
(ppm)	100	150 - 250	800	Spas	
Total Dissolved Solids (ppm)	NA	NA	1,500 over start-up***	All Types	
	0	30 – 50	100	Outdoor Pools	
Cyanuric Acid (ppm)	0	0	0	Indoor Pool/Spa	
	78º F	80.5º F	82º F	Competition Pools	
Temperature	-	-	104º F	Spas	
	-	Personal Preference	104º F	Other Pools	

For calcium hypochlorite, lithium hypochlorite, or sodium hypochlorite

** For sodium dichlor, trichlor, chlorine gas, BCDMH

*** Start-up includes the TDS contribution of salt found in chlorine generating systems

The Disinfectant

Parameter	Min.	Ideal	Max.	Pool Type
Free Chlorine	1.0	2.0 - 4.0	5.0	Pools
(ppm)	2.0	3.0 - 5.0	10.0	Spas
Total Bromine (ppm)	2.0	4.0 - 6.0	10.0	All Types

The Contaminants

Contaminant	Min.	Ideal	Max.	Pool Type
Combined Chlorine	0	0	0.2	Pools
(ppm)	0	0	0.5	Spas
Heavy Metals	None	None	None	All Types
Visible Algae	None	None	None	All Types
Bacteria	None	None	Local Code	All Types

Chemical Dosages for 10,000 Gallons

Dosages to Treat	10,000 Gallons		
Chemical	Desired Change		
Increase Chlorine	1 ppm 5 ppm 10 ppm		
Chlorine Gas	1.3 oz	6.7 oz	13 oz
Calcium Hypochlorite (67%)*	2 oz	10 oz	1.3 lb
Sodium Hypochlorite (12%)	10.7 fl.oz.	1.7 qtrs.	3.3 qtrs.'
Lithium Hypochlorite	3.8 oz	1.2 lbs	2.4 lbs
DiChlor (62%)	2.1 oz	10.75 oz	1.3 lbs
DiChlor (56%)	2.4 oz	12 oz	1.4 lbs
TriChlor	1.5 oz	7.5 oz	14 oz

Increase Total Alkalinity	10 ppm	30 ppm	50 ppm
Sodium Bicarbonate	1.4 lbs	4.2 lbs	7.0 lbs
Sodium Carbonate	14 oz	2.6 lbs	4.4 lbs
Sodium Sesquicarbonate	1.25 lbs	3.75 lbs	6.25 lbs

Decrease Total Alkalinity	10 ppm	30 ppm	50 ppm
Muriatic Acid (31.4%)	26 fl.oz.	2.4 qtrs.	1 gal
Sodium Bisulfate	2.1 lbs	6.4 lbs	10.5 lbs

Increase Calcium Hardness	10 ppm	30 ppm	50 ppm
Calcium Chloride (100%)	.9 lbs	2.8 lbs	4.6 lbs
Calcium Chloride (77%)	1.2 lbs	3.6 lbs	6.0 lbs

Increase Stabilizer	10 ppm	30 ppm	50 ppm
Cyanuric Acid	13 oz	2.5 lbs	4.1 lbs

Neutralize Chlorine	1 ppm	5 ppm	10 ppm
Sodium Thiosulfate	2.6 oz	13 oz	1.6 lbs
Sodium Sulfite	2.4 oz	12 oz	1.5 lbs

Chemical amounts have been rounded off for convenience. Always follow the instructions on the manufacturer's label for exact amounts.

* **Other** calcium hypochlorite products are available from 47% to 78%. Remember to follow the label directions for dosage amounts.

(Pool & Hot Tub Alliance, 2023 Pool & Spa Handbook, Appendix B-2)

A – Amount	B – BIG		C	Change	Total
(from dosage chart or other source)	<u>B-1</u> Actual Gals		<u>C-1</u> Actual Chg		
		Divide		Divide	
	<u>B-2</u> Label Gals		<u>C-2</u> Label Chg		
	Times		Times		
				Divide ? oz ? (16) or fl. oz ? (128)	
				Final Answer	

A – Amount	B – BIG		C –	Change	Total
(from dosage chart or other source)	<u>B-1</u> Actual Gals		<u>C-1</u> Actual Chg		
		Divide		Divide	
	<u>B-2</u> Label Gals		<u>C-2</u> Label Chg		
	Times		Times		
				Divide ? oz ? (16)	
				or fl. oz ? (128)	
				Final Answer	

A – Amount	В	– BIG	C –	Change	Total
(from dosage chart or other source)	<u>B-1</u> Actual Gals		<u>C-1</u> Actual Chg		
		Divide		Divide	
	<u>B-2</u> Label Gals		<u>C-2</u> Label Chg		
	Times		Times		
				Divide ? oz ? (16) or fl. oz ? (128)	
				Final Answer	

A – Amount	В	– BIG	C –	Total	
(from dosage chart or other source)	<u>B-1</u> Actual Gals		<u>C-1</u> Actual Chg		
		Divide		Divide	
	<u>B-2</u> Label Gals		<u>C-2</u> Label Chg		
	Times		Times		
				Divide ? oz ? (16) or fl. oz ? (128)	
				Final Answer	

A – Amount	В	– BIG	C –	C – Change			
(from dosage chart or other source)	<u>B-1</u> Actual Gals		<u>C-1</u> Actual Chg				
		Divide		Divide			
	<u>B-2</u> Label Gals		<u>C-2</u> Label Chg				
	Times		Times				
				Divide ? oz ? (16)			
				or fl. oz ? (128)			
				Final Answer			

A – Amount	В	– BIG	C –	Change	Total
(from dosage chart or other source)	<u>B-1</u> Actual Gals		<u>C-1</u> Actual Chg		
		Divide		Divide	
	<u>B-2</u> Label Gals		<u>C-2</u> Label Chg		
	Times		Times		
				Divide ? oz ? (16) or fl. oz ? (128)	
				Final Answer	

A – Amount	В	– BIG	C –	Change	Total
(from dosage chart or other source)	<u>B-1</u> Actual Gals		<u>C-1</u> Actual Chg		
		Divide		Divide	
	<u>B-2</u> Label Gals		<u>C-2</u> Label Chg		
	Times		Times		
				Divide ? oz ? (16) or fl. oz ? (128)	
				Final Answer	

A – Amount	B – BIG		C –	C – Change			
(from dosage chart or other source)	<u>B-1</u> Actual Gals		<u>C-1</u> Actual Chg				
		Divide		Divide			
	<u>B-2</u> Label Gals		<u>C-2</u> Label Chg				
	Times		Times				
				Divide ? oz ? (16)			
				or fl. oz ? (128)			
				Final Answer			

A – Amount	B – BIG		C	C – Change			
(from dosage chart or other source)	<u>B-1</u> Actual Gals		<u>C-1</u> Actual Chg				
		Divide		Divide			
	<u>B-2</u> Label Gals		<u>C-2</u> Label Chg				
	Times		Times				
				Divide ? oz ? (16) or fl. oz ? (128)			
				Final Answer			

A – Amount	В	– BIG	C	C – Change				
(from dosage chart or other source)	<u>B-1</u> Actual Gals		<u>C-1</u> Actual Chg					
		Divide		Divide				
	<u>B-2</u> Label Gals		<u>C-2</u> Label Chg					
	Times		Times					
				Divide ? oz ? (16) or fl. oz ? (128)				
				Final Answer				

A – Amount	B – BIG		C –	C – Change				
(from dosage chart or other source)	<u>B-1</u> Actual Gals		<u>C-1</u> Actual Chg					
		Divide		Divide				
	<u>B-2</u> Label Gals		<u>C-2</u> Label Chg					
	Times		Times					
				Divide ? oz ? (16) or fl. oz ? (128)				
				Final Answer				

A – Amount	В	– BIG	C –	Change	Total
(from dosage chart or other source)	<u>B-1</u> Actual Gals		<u>C-1</u> Actual Chg		
		Divide		Divide	
	<u>B-2</u> Label Gals		<u>C-2</u> Label Chg		
	Times		Times		
	•			Divide ? oz ? (16)	
				or fl. oz ? (128)	
				Final Answer	

Breakpoint Super-Chlorination

Worksheet

Step One: Determine the amount of Combined Chlorine	(CC = TC - FC)
---	----------------

Step Two: Calculate the Breakpoint Chlorination (BPC) amount (CC x 10)

Step Three: Determine the desired change amount (DC) (BPC – FC)

	Total Chlorine		Free Chlorine		Combine Chlorine	
Step One		-		Π		
Step Two	Multi	ply	[,] by 10			
Step Three	Subtract th	Subtract the Free Chlorine				
	his number in the in the chemical A					

Chemical Adjustment Worksheet							
A – Amount	В	– BIG	C – Change		Total		
(from dosage chart or other source)	<u>B-1</u> Actual Gals		<u>C-1</u> Actual Chg				
		Divide		Divide			
	<u>B-2</u> Label Gals		<u>C-2</u> Label Chg				
	Times		Times				
				Divide ? oz ? (16) or fl. oz ? (128)			
				Final Answer			

Breakpoint Super-Chlorination Worksheet

Step One: Determine the amount of Combined Chlorine	(CC = TC - FC)
Step Two: Calculate the Breakpoint Chlorination (BPC) amount	(CC x 10)
Step Three: Determine the desired change amount (DC)	(BPC – FC)

	Total Chlorine		Free Chlorine		Combine Chlorine
Step One		-		=	
Step Two	Multi	ply	by 10		
Step Three	Subtract th	e F	ree Chlorine		-
Use t	his number in the	ge)			
blank	in the Chemical A	dju	stment Worksho	eet	

Chemical Adjustment Worksheet										
A – Amount	В	– BIG	C –	Change	Total					
(from dosage chart or other source)	<u>B-1</u> Actual Gals		<u>C-1</u> Actual Chg							
		Divide		Divide						
	<u>B-2</u> Label Gals		<u>C-2</u> Label Chg							
	Times		Times							
				Divide ? oz ? (16) or fl. oz ? (128)						
				Final Answer						

Breakpoint Super-Chlorination Worksheet

Step One: Determine the amount of Combined Chlorine	(CC = TC - FC)
Step Two: Calculate the Breakpoint Chlorination (BPC) amount	(CC x 10)
Step Three: Determine the desired change amount (DC)	(BPC – FC)

	Total Chlorine		Free Chlorine		Combine Chlorine
Step One		-		=	
Step Two	Multi	ply	by 10		
Step Three	Subtract th	e F	ree Chlorine		-
Use t	his number in the	ge)			
blank	in the Chemical A	dju	stment Worksho	eet	

Chemical Adjustment Worksheet										
A – Amount	В	– BIG	C –	Change	Total					
(from dosage chart or other source)	<u>B-1</u> Actual Gals		<u>C-1</u> Actual Chg							
		Divide		Divide						
	<u>B-2</u> Label Gals		<u>C-2</u> Label Chg							
	Times		Times							
				Divide ? oz ? (16) or fl. oz ? (128)						
				Final Answer						

Breakpoint Super-Chlorination Worksheet

Step One: Determine the amount of Combined Chlorine	(CC = TC - FC)
Step Two: Calculate the Breakpoint Chlorination (BPC) amount	(CC x 10)
Step Three: Determine the desired change amount (DC)	(BPC – FC)

	Total Chlorine		Free Chlorine		Combine Chlorine
Step One		-		=	
Step Two	Multi	ply	[,] by 10		
Step Three	Subtract th	e F	ree Chlorine		-
	his number in the in the chemical A				

	Chemical Adjustment Worksheet										
A – Amount	В	– BIG	C	- Change	Total						
(from dosage chart or other source)	<u>B-1</u> Actual Gals		<u>C-1</u> Actual Chg								
		Divide		Divide							
	<u>B-2</u> Label Gals		<u>C-2</u> Label Chg								
	Times		Times								
				Divide ? oz ? (16) or fl. oz ? (128)							
				Final Answer							

The following pages contain additional information which is not in or explicitly stated in the

Pool & Spa Operator Handbook[™]

			_							_			_			_				_			C	-	
18 VIIIA 2 4.0026	HELIUM 10 20.180	Ne	NEON	18 39.948	Ar	ARGON	36 83.798	Kr	KRYPTON	54 131.29	Xe	XENON	86 (222)	Rn	RADON	118 ()	Umo	UNUNOCTIUM	Eni Generalió	71 174.97	Lu	LUTETIUM		103 (262)	Lr
	17 VIIA 9 18.998	E	FLUORINE	17 35.453	C	CHLORINE	35 79.904	Br	BROMINE	53 126.90	I	IODINE	85 (210)	At	ASTATINE	117 ()	Uus	UNUNSEPTIUM	Copyright © 2012 Eni Generalić	70 173.05	Υb	YTTERBIUM		102 (259)	No
S I I I I I I I I I I I I I	VIA 15.999	0	OXYGEN	16 32.065	S	SULPHUR	34 78.96	Se	SELENIUM	52 127.60	Te	TELLURIUM	84 (209)	Po	POLONIUM	116 (291) 117 ()	Lv	LIVERMORIUM	S	69 168.93	Tm	THULIUM		101 (258)	MIdl
Deriodni.c	14.007	Z	NITROGEN	15 30.974	Ρ	PHOSPHORUS	33 74.922	As	ARSENIC	51 121.76	Sb	ANTIMONY	83 208.98	Bi	BISMUTH	115 ()	Ump	FLEROVIUM UNUNPENTIUM LIVERMORIUM UNUNSEPTIUM UNUNOCTIUM		68 167.26	Er	ERBIUM		(252) 100 (257) 101 (258) 102 (259) 103 (262)	Rim
EMENTS http://www.periodni.com	14 IVA 15 6 12.011 7	U	CARBON	14 28.086	Si	SILICON	32 72.64	Ge	GERMANIUM	50 118.71	Sn	TIN	82 207.2	Pb	LEAD	114 (287)	IR1	FLEROVIUM		67 164.93	Ho	HOLMIUM			ES
	13 A 14 5 10.811 6	B	BORON	13 26.982	AI	ALUMINIUM	31 69.723	Ga	GALLIUM	49 114.82	In	MUIDNI	81 204.38	I	THALLIUM	113 ()	Uut	UNUNTRIUM		66 162.50	Dy	TERBIUM DYSPROSIUM		98 (251) 99	Gf
			Pa)	c	1	12 IIB	30 65.38	Zn	ZINC	48 112.41	Cd	CADMIUM	80 200.59	Hg	MERCURY	112 (285) 113 ()	GB	MEITNERIUM DARMSTADTIUM ROENTGENIUM COPERNICIUM UNUNTRIUM		65 158.93 66 162.50	Tb	TERBIUM		97 (247) 98	BIK
	Chalcogens element Halogens element	as	STANDARD STATE (25 °C; 101 kPa) Ne - gas Fe - solid	Tc - synthetic		11 18	29 63.546	Cu	COPPER	47 107.87	Ag	SILVER	79 196.97	Au	GOLD	111 (280)	Rg	ROENTGENIUM		64 157.25	Gd	GADOLINIUM		96 (247) 97	GE
DT 1	Chalco	Noble gas	ANDARD STATE	q		10	28 58.693	Ni	NICKEL	46 106.42	Pd	PALLADIUM	78 195.08	Pt	PLATINUM	110 (281)	Ds	DARMSTADTIUM		63 151.96	Eu	EUROPIUM		95 (243) 96	Ann
9	etal	L	STAND	E H	VIIIB	9	27 58.933	Co	COBALT	45 102.91	Rh	RHODIUM	77 192.22	Ir	IRIDIUM	109 (276)	MIt	MEITNERIUM		62 150.36	Sm	SAMARIUM		94 (244) 95	Pul
	Alkali metal Alkaline earth metal	Transition metals	Actinide			8	26 55.845	Fe	IRON	44 101.07	Ru	RUTHENIUM	76 190.23	0s	MUIMSO	108 (277)	HIS	HASSIUM		61 (145)	Pin	PROMETHIUM		-	Np
IC TABLE	Alka Alka	Tra				7 VIIB	25 54.938	Mn	MANGANESE	43 (98)	Te	MOLYBDENUM TECHNETIUM RUTHENIUM	75 186.21	Re	RHENIUM	107 (272)	Bh	BOHRIUM		60 144.24	pN	PRASEODYMIUM NEODYMIUM PROMETHIUM SAMARIUM EUROPIUM GADOLINIUM		91 231.04 92 238.03	D
	GROUP CAS					6 VIB	24 51.996	Cr	CHROMIUM	42 95.96	Mo	MOLYBDENUM	74 183.84	M	TUNGSTEN	106 (271)	60 23	SEABORGIUM		59 140.91 60 144.24	Pr	PRASEODYMIUM		91 231.04	Pa
	All C	R	NODON	NOVOG	ELEMENT NAME	5 VB	23 50.942	Λ	VANADIUM	41 92.906	qN	NIOBIUM	73 180.95	Ta	TANTALUM	105 (268)	Dlb	DUBNIUM	DE	58 140.12	Ce	CERIUM		90 232.04	Th
	0	SYMBOL			ELEN	4 IVB	22 47.867	Ï	TITANIUM	40 91.224	Zr	ZIRCONIUM	72 178.49	Hf	HAFNIUM	104 (267)	IRI	RUTHERFORDIUM	LANTHANIDE	57 138.91	La	LANTHANUM	ACTINIDE	89 (227)	Ac
Б	GROUP IUPA	ALUMICIN				3 1118	21 44.956	Sc	SCANDIUM	39 88.906	Υ	YTTRIUM	57-71	La-Lu	Lanthanide	89-103	Ac-Lr	Actinide		(156 (2009)	sthat have	iclosed in	However	do have a	mposiuon, sulated.
	2 IIA 4 9.0122	Be	BERYLLIUM	12 24.305	Mg	MAGNESIUM	20 40.078	Ca	CALCIUM	38 87.62	Sr	STRONTIUM	56 137.33	Ba	BARIUM	88 (226)	Ra	RADIUM		No. 11. 2131-2	sses are expre s. For elements	the value en	of the element.	Th, Pa and U)	iat isotopic col ic weight is tab
GROUP 1 IA 1 1.0079 H	HYDROGEN 2 3 6.941 4	Li	LITHIUM	11 22.990	Na	NUIDOS	19 39.098	K	POTASSIUM	37 85.468	Rb	RUBIDIUM	55 132.91	Cs	CAESIUM	87 (223)	Fr	FRANCIUM		(1) Pure Appl. Chem., 81, No. 11, 2131-2156 (2009)	Relative atomic masses are expressed with five significant figures. For elements that have	no stable nuclides, the value enclosed in	brackets indicates the mass number of the longest-lived isotope of the element. However	three such elements (Th, Pa and U) do have a	characteristic terreserial isotopic compositi- and for these an atomic weight is tabulated.
-		7			e			4			ŝ			9			7			(1) Pure A	Relati five si	no st.	Dracki	three	cnarad and fo

CPO.Training 27758 Santa Marg. Pkwy. #339, Mission Viejo, CA., 92691

ACTINIUM THORIUM PROTACTINIUM URANIUM NEPTUNIUM PLUTONIUM AMERICIUM CURIUM BERKELIUM CALIFORNIUM ENSTEINIUM FERMIUM MENDELEVUM NOBELIUM LAWRENCIUM

<u>Element</u>	<u>Atomic Weight</u>	
Carbon	12.01	Atomic Weights
Nitrogen	14.01	Atomic Weights
Oxygen	16	Of Organic Chlorine
Sodium	22.99	Of Organic Chiofine
Chlorine	35.45	
Cyanı	uric Acid	$C_3N_3O_3$
Carbon	36.03	
Nitrogen	42.03	
Oxygen	48	
Total	<u>126.06</u>	• • ••••••••
		-
<u>Tri</u>	<u>Chlor</u>	$C_3N_3O_3Cl_3$
CYA	126.06	(+1)
Chlorine (3)	106.35	
<u>Total</u>	<u>232.41</u>	
%Chlor	45.76%	
%CYA	54.24%	
		+1 +1
Di	Chlor	$NaCl_2C_3N_3O_3$
CYA	126.06	
Sodium (1)	22.99	
Sub-Total	149.05	
Chlorine (2)	70.9	T T
<u>Total</u>	219.95	
%Chlor	32.23%	+1 +1
%CYA	57.31%	
%Sodium	10.45%	

CPO.Training 27758 Santa Marg. Pkwy. #339, Mission Viejo, CA., 92691

Cyanuric Acid

(Chlorine Stabilizer / Pool Water Conditioner)

Cyanuric acid (CYA) is used in pool water to protect the chlorine disinfectant from the sun's UV. It does this by forming a weak molecular bond with the disinfectant, thus keeping it in the water longer. This bond, however, **does slow down** the killing rate of the chlorine disinfectant.

To ensure there is enough active chlorine disinfectant to keep a healthy swimming pool and to prevent algae when using CYA, the measured FC level should be at least **7.5 percent** of the amount of CYA. For example: if the CYA level is 50ppm then the measured residual FC should be at least 3.75 (4ppm).

High levels of CYA -- i.e., 100, 200 and higher -- will require impractical high levels of chlorine disinfectant to prevent algae and to ensure the inactivation of harmful bacteria and other pathogens that may be introduced into the swimming pool. When CYA levels are this high, then supplemental chemicals (algaecides, oxidizers, phosphate removers, etc.) can be used to help prevent algae and to help keep the pool safe and healthy.

Table 5 is the guideline that shows the amount of chlorine disinfectant needed as the CYA levels go up, given an equivalent killing rate. These chlorine/CYA ratios should be followed to maintain a healthy pool.

	Chlorine / CYA Chart											
	Free available Chlorine (ppm)											
CYA (ppm)	Minimum (≈7.5% of CYA)											
0	$.07^{1}$	$.1^{1}$.71	2^{1}								
10	1 ¹	1.5^{1}	5	7								
20	2	3	10	13								
30	2	4	12	18								
40	3	5	16	24								
50	4	6	20	30 ²								
60	5	7	24	35 ²								
70	5	8	28^{2}	41^{2}								
80	6	9	31 ²	46^{2}								
90	7	10	35 ²	52^{2}								
100	7	12	39 ²	58 ²								
120	9	14	47^{2}	68 ²								
		Tabl	le 5									

¹A minimum FC level is needed as a "reserve" for usage so in practice at least 2 ppm FC is required even at low CYA levels. The table above shows the amount needed for disinfecting chlorine for equivalent killing power (rates), but does not take into account the amount needed in reserve to prevent getting used up as this varies by pool.

²The shock levels shown have equivalent disinfecting chlorine amounts (in a column) but at high CYA levels it may be impractical to use such high FC levels. A partial drain/refill to lower the CYA level is usually what is needed, or one can shock at a lower level but will take longer to kill the algae.

ACKNOWLEDGMENT: The chlorine/CYA chart was developed by Ben Powell of 'The Pool Forum' and Richard Falk of 'Trouble Free Pool'.

Universal Dosage Formula

 $Pounds = \left(\frac{Pool \ Gallons \ x \ PPM \ change}{120,000}\right)$

X Multiplier

Chemical	Multiplier		Weight in 1Ib DE Scoop
Alkalinity – Down			
Muriatic Acid (quarts)	.96		N/A
Sodium Bisulfate (Dry Acid)	2.55		4.6 lbs.
Alkalinity – Up			
Sodium Bicarb (Baking Soda)	1.68		3.9 lbs.
Sodium Carbonate (Soda Ash)	1.06		4 lbs.
Chlorine		Amount Needed to Equal ACC of 1 lb. of Cl ₂ gas	
Sodium Hypochlorite - Bleach (Liquid 12%, gallon)	1	1 gallon	N/A
TriChlor (90%)	1.09	1.1 lbs. (≈ 2 tabs)	3.5 lbs.
Sodium DiChlor (56%)	1.81	1.8 lbs.	3.3 lbs.
Calcium Hypochlorite (65%)	1.55	1.5 lbs.	2.9 lbs.
Calcium - Calcium Chloride (77%)	1.44		3 lbs.
Stabilizer - Cyanuric Acid	1		2.4 lbs.
Salt	1		3.8 lbs.
Borate (5 mol, pentahydrate)	6.74		
(10 mol, decahydrate)	9.09		
Boric Acid	5.7		

Pounds X 120,000 PPM = **Pool Gallons/Multiplier**

Pool Gallons = Pounds X 120,000 **PPM/Multiplier**

Equivalents of Common Pool Chemicals

Chemical Name	Equivalent to 1 lb. of Cl ₂ Gas	Weight in a 1 lb. DE Scoop	Price per Pound 06-2013 / 01-2023	
Sodium Hypochlorite (Bleach)	1 Gallon 12% Trade Grade	N/A	\$2.86/Gallon \$5.66	
Sodium DiChlor (56%)	1.8 lbs.	3.3 lbs.	\$2.15 / \$5.12	
TriChlor 3" Tabs (90%)	1.1 lbs. (≈ 2 tabs)	N/A	\$1.88 / \$4.10	
TriChlor (Granular) (90%)	1.1 lbs.	3.5 lbs.	\$2.38 / \$6.00	
Calcium Hypochlorite (65%)	1.5 lbs.	2.9 lbs.	\$1.63 / \$2.72	
D.E.		1 lb.	\$0.33 / \$0.54	
Cyanuric Acid (Chlorine Stabilizer)		2.4 lbs.	\$0.85 / \$1.44	
Salt		3.8 lbs.	\$0.15 / \$0.28	
Sodium Bicarbonate (Baking Soda)		3.9 lbs.	\$0.45 / \$0.64	
Sodium Carbonate (Soda Ash)		4 lbs.	\$0.44 / \$0.44	
Potassium Monopersulfate		4.3 lbs.	\$3.34 / \$5.04	
Sodium Bromide		5.2 lbs.	\$3.96 / \$5.44	
Muriatic Acid (Liquid Acid)		N/A	\$4.18/Gallon \$7.50	
Sodium Bisulfate	Equivalent to 1 quart. Muriatic Acid (TA)	4.6 lbs.	\$1.40 / \$1.53	
(Dry Acid)	≈ 2.5 pounds			
Boric Acid			\$0.96	

pH of Common Pool Water Chemicals

Chemical	рН	
Sodium Carbonate (Soda Ash)	\approx 12.3 or higher	
Sodium Hypochlorite (Liquid Chlorine, Bleach)	9-13	
Calcium Hypochlorite (Cal Hypo)	8.5-11	
Sodium Tetraborate Pentahydrate (Endure)	9.1-9.2	
Calcium Chloride	8-9	
Sodium Bicarbonate (Baking Soda, BiCarb)	8.3	
Sodium Bromide	6.5-8	
DiChlor	6.8-7.1	
Boric Acid	5.1	
Cyanuric Acid (Chlorine Stabilizer, Conditioner)	3-4	
TriChlor	2.7-2.9	
Potassium Monopersulfate	2-2.3	
Sodium Bisulfate (Dry Acid)	1.4	
Muriatic Acid	< 1	

Adding Chlorine Compounds to <u>The Swimming Pool</u>

When chlorine compounds are added to a swimming pool to disinfect and oxidize the water, the active chlorine (HOCl) gets used up and the other elements of the compound will build up. When the active chlorine does its job and gets used/consumed, it converts to chloride, i.e. salt which also builds up in the pool water.

The following chart shows the rate of build-up of salt and other chemicals per 10ppm of chlorine added to a swimming pool using the various chlorine compounds.

Chlorine Compound (10 ppm)	Salt Build-Up (in ppm)	<u>Chemical</u> Build-Up (in ppm)
Sodium Hypochlorite (10 ppm)	16.4 ppm	
TriChlor (10ppm)	8.2 ppm	Cyanuric Acid 6.1 ppm
DiChlor (10ppm)	8.2 ppm	Cyanuric Acid 9.1 ppm
Calcium Hypochlorite (10ppm)	8.2 ppm	Calcium Hardness 7 ppm

ACKNOWLEDGMENT: These ratios are published online at the forum: <u>TroubleFreePool.com</u>. by Richard Falk, aka "ChemGeek". He has also published them on various other forums and articles that he has written.

2023-r3

Incompatible Chemicals

Incompatible Chemicals	Result	
Calcium Chloride (Hardness Increaser) AND Sodium Bicarbonate (BiCarb) OR Sodium Carbonate (Soda Ash)	Calcium Chloride and bicarb or soda ash should not be added at the same time or even within a few hours of each other. A white precipitate will form, clouding the water and may cause scaling	
TriChlor AND Cal Hypo	Explosion and Fire (by themselves)	
Chlorine – Any kind AND Iron	Stain and discolored water. Iron above .5ppm will rapidly destroy the chlorine.	
Polymer water Clarifier AND Sequestering agent	Cloudiness that may not go away or filter out	
Phosphate Remover AND Sequestering Agent	Cloudiness	
Phosphate Remover AND High level of calcium or magnesium	Cloudiness and a precipitate that may scale	

2023-r3

RECREATIONAL WATER ILLNESSES AT A GLANCE

PATHOGAN	TYPE	METHOD OF TRANSMISSION	SYMTOMS	REAL WORLD OCCURRENCE	CHLORINATION TIME (1PPM FAC)
Cryptosporidium	Parasite	Swallowing contaminated water. Very contagious, through people-to- people contact.	Dehydration, weight loss, stomach cramps, fever, nausea, vomiting. No treatment.	In 2008, several pools and water parks in the Dallas/Ft. Worth area were contaminated and closed. Hundreds of people were sick, one died	About 255 hours (10.6 days)
E.coli	Bacteria	Swallowing contaminated water.	Severe bloody diarrhea, abdominal cramps, kidney failure. Antibiotics available.	In 1998, 26 children fell ill from an outbreak in a Marietta, Georgia wading pool. Seven had kidney failure; one died.	Less than one minut
Giadiasis	One-celled parasite	Swallowing contaminated water. Cysts can survive in cold water for months.	Diarrhea, gas, greasy stools, stomach cramps, upset stomach, nausea. Prescription drugs available.	In 2003, 55 people were struck at a country club in Milton, Massachusetts. The source believed to be the children's swimming pool.	About 45 minutes
Hepatitis	A Virus	Swallowing water contaminated with feces infected with virus.	Jaundice, fatigue, stomach pain, loss of appetite, nausea, diarrhea, fever. No real treatment. Vaccine available.	The public pools at a campground in Louisiana were the source of a multistate outbreak in 1989. 20 people were infected.	About 16 minutes
Legionnaires' Disease	Bacterium Legionella pneumophila	Breathing mists from hot tubs infected with the bacteria. Not contagious.	Fever, chills, cough, muscle aches, headache, fatigue, diarrhea, kidney malfunction. Legionnaire's treatable.	Over 120 people became ill after attending a conference at the Playboy Mansion in L.A. in February 2011. Legionella pneumophila bacteria was found in the grotto spa	Less than one minut
Naegleria Infection	Microscopic amoeba	Enters through the nose and travels to brain and spinal cord. Feeds on brain tissue. Very rare infections.	Causes primary amebic meningoencephalitis (PAM), a brain inflammation. Drugs available, high fatality rate.	In 1978, a 9-year-old girl in San Francisco was infected in a hot springs pool; she was one of only three known survivors of this disease.	Less than one minut
Norovirus Gastroenteritis	Virus	Swallowing water contaminated with feces infected with virus. Very contagious.	Nausea, vomiting, diarrhea, stomach cramping, fever, chills, muscle aches, fatigue. Most recover in 1-2 days.	In 2004, 53 people fell ill at a swim club in Vermont.	About 30 minutes to an hour
Pseudomonas Dermatitis (Hot tub rash)	Bacteria, Pseudomonas Aeruginosa	Direct skin contact with contaminated water. Usually in hot tubs but also in pools.	Itchy skin, red rash, blisters around hair follicles. Clears up on its own in a few days.	Nine cases were documented at a hotel pool and spa in Bangor, Maine. In January 2009, this bacterium was found in the blood of a Brazilian Model – both hands and feet were amputated – she died	Less than one minut
Salmonellosis	Bacteria, Salmonella	Swallowing water contaminated with bacteria.	Diarrhea, fever, cramps. Antibiotics if infection spreads to intestines; no necessary treatment otherwise.	Three cases were documented at a park pool in 1995.	Less than one minut
Shigellosis Shigella	Bacteria, Shigella	Swallowing water contaminated with bacteria.	Bloody diarrhea, fever, cramps. Antibiotics-though forms of shigella have become resistant.	An un-chlorinated wading pool in Dubuque, Iowa, caused at least 69 cases in 2001	Less than one minut